The Deepfake Detection API employs advanced algorithms and deep learning techniques to distinguish genuine content from manipulated digital media. This ensures the credibility of visual content like images and videos in various applications like Identity verification, and more. Thus safeguarding against the rising threat of deepfake creations and identity fraud. Integrate this API seamlessly for enhanced security while seamlessly detecting potential fraud in your digital environment.
Identifies deepfake media, spanning videos, images, and audio, that can often elude human detection
Scale efficiently with easy integration to process large volumes of media content across various platforms and systems
Can detect deepfakes in real-time, allowing for a swift response to counter disinformation and fake news
Achieve near-perfect results with our tool, accurately identifying deepfakes with precision
Annual API Volume
Accuracy Rate
Daily API Volume
Time to launch
Hassle-Free,
No Code Platform
Easy to adopt
& integrate
99.99%
API Success Rate
Reliable &
Secure
9 May 2024
Deepfake is an astonishing technology that has been blurring the lines between...
15 May 2024
As 2024 matures, we all witness an astonishing year for democracy and technology...
28 May 2024
In an age where technology continuously blurs the lines between reality and fabrication...
Please wait...
Supports: JPG, PNG, etc
Supports: WAV, FLAC, etc
Supports: MP4,AVI etc
Supports: JPG, PNG, etc
Supports: WAV, FLAC, etc
Supports: MP4,AVI etc
{{upload_type != 'audio' ? 'Your document is processed successfully.' : 'Your Audio is processed successfully.'}}
{{output.body.result |capitalize }}
Real Audio Confidence: {{output.body.confidence.real*100}}% (This part is likely real) of duration {{output.body.real_duration}}
Fake Audio Confidence: {{output.body.confidence.fake*100}}% (This part is likely fake) of duration {{output.body.fake_duration}}
Silence Intervals
curl --location --request POST '{{url}}/api/v1/deepfake-detection/{{upload_type}}' \
--header 'token: < your private token >' \
--header 'content-type: application/json' \
--data-raw '{
"doc_base64": '< base64 string of image / video>',
"req_id": '< req id string>'
"isIOS": '< boolean>',
"doc_type": '< string (video/image)>',
"orientation": '< int>'
}'
curl --location --request POST '{{url}}/api/v1/deepfake-detection/{{upload_type}}' \
--header 'token: < your private token >' \
--header 'content-type: application/json' \
--data-raw '{
"doc_base64": '< base64 string of audio>',
"req_id": '< req id string>'
}'
OkHttpClient client = new OkHttpClient().newBuilder().build();
MediaType mediaType = MediaType.parse("application/javascript");
RequestBody body = RequestBody.create(mediaType, "{ "doc_base64": '< base64 string of image / video >',"req_id": '< req id string >', "isIOS": '< boolean >', "doc_type": '< string (video/image) >', "orientation": '< int >' }");
Request request = new Request.Builder()
.url("{{url}}/api/v1/deepfake-detection/{{upload_type}}")
.method("POST", body)
.addHeader("token", "< your private token >")
.addHeader("content-type", "application/json")
.build();
Response response = client.newCall(request).execute();
OkHttpClient client = new OkHttpClient().newBuilder().build();
MediaType mediaType = MediaType.parse("application/javascript");
RequestBody body = RequestBody.create(mediaType, "{ "doc_base64": '< base64 string of audio >',"req_id": '< req id string >' }");
Request request = new Request.Builder()
.url("{{url}}/api/v1/deepfake-detection/{{upload_type}}")
.method("POST", body)
.addHeader("token", "< your private token >")
.addHeader("content-type", "application/json")
.build();
Response response = client.newCall(request).execute();
require "uri"
require "net/http"
url = URI("{{url}}/api/v1/deepfake-detection/{{upload_type}}")
https = Net::HTTP.new(url.host, url.port)
https.use_ssl = true
request = Net::HTTP::Post.new(url)
request["token"] = "< your private token >"
request["content-type"] = "application/json"
request.body = "{"doc_base64": '< base64 string of image / video >',"req_id": < req id string >, "isIOS": '< boolean >', "doc_type": '< string (video/image) >', "orientation": '< int >', }"
response = https.request(request)
puts response.read_body
require "uri"
require "net/http"
url = URI("{{url}}/api/v1/deepfake-detection/{{upload_type}}")
https = Net::HTTP.new(url.host, url.port)
https.use_ssl = true
request = Net::HTTP::Post.new(url)
request["token"] = "< your private token >"
request["content-type"] = "application/json"
request.body = "{"doc_base64": "< base64 string of audio >","req_id": < req id string > }"
response = https.request(request)
puts response.read_body
CURL *curl;
CURLcode res;
curl = curl_easy_init();
if(curl) {
curl_easy_setopt(curl, CURLOPT_CUSTOMREQUEST, "POST");
curl_easy_setopt(curl, CURLOPT_URL, "{{url}}/api/v1/deepfake-detection/{{upload_type}}");
curl_easy_setopt(curl, CURLOPT_FOLLOWLOCATION, 1L);
curl_easy_setopt(curl, CURLOPT_DEFAULT_PROTOCOL, "https");
struct curl_slist *headers = NULL;
headers = curl_slist_append(headers, "token: < your private token >");
headers = curl_slist_append(headers, "content-type: application/json");
curl_easy_setopt(curl, CURLOPT_HTTPHEADER, headers);
const char *data = "{"doc_base64": '< base64 string of image / video >',"req_id": < req id string >, "isIOS": '< boolean >', "doc_type": '< string (video/image) >', "orientation": '< int >', }";
curl_easy_setopt(curl, CURLOPT_POSTFIELDS, data);
res = curl_easy_perform(curl);
}
curl_easy_cleanup(curl);
CURL *curl;
CURLcode res;
curl = curl_easy_init();
if(curl) {
curl_easy_setopt(curl, CURLOPT_CUSTOMREQUEST, "POST");
curl_easy_setopt(curl, CURLOPT_URL, "{{url}}/api/v1/deepfake-detection/{{upload_type}}");
curl_easy_setopt(curl, CURLOPT_FOLLOWLOCATION, 1L);
curl_easy_setopt(curl, CURLOPT_DEFAULT_PROTOCOL, "https");
struct curl_slist *headers = NULL;
headers = curl_slist_append(headers, "token: < your private token >");
headers = curl_slist_append(headers, "content-type: application/json");
curl_easy_setopt(curl, CURLOPT_HTTPHEADER, headers);
const char *data = "{"doc_base64": "< base64 string of audio >","req_id": < req id string > }";
curl_easy_setopt(curl, CURLOPT_POSTFIELDS, data);
res = curl_easy_perform(curl);
}
curl_easy_cleanup(curl);
var request = require('request');
var options = {
'method': 'POST',
'url': '{{url}}/api/v1/deepfake-detection/{{upload_type}}',
'headers': {
'token': '< your private token >',
'content-type':'application/json'
},
body: '{"doc_base64": "< base64 string of image / video >","req_id": < req id string >, "isIOS": '< boolean >', "doc_type": '< string (video/image) >', "orientation": '< int >' }'
};
request(options, function (error, response) {
if (error) throw new Error(error);
console.log(response.body);
});
var request = require('request');
var options = {
'method': 'POST',
'url': '{{url}}/api/v1/deepfake-detection/{{upload_type}}',
'headers': {
'token': '< your private token >',
'content-type':'application/json'
},
body: '{"doc_base64": "< base64 string of audio >","req_id": < req id string > }'
};
request(options, function (error, response) {
if (error) throw new Error(error);
console.log(response.body);
});
var client = new RestClient("{{url}}/api/v1/deepfake-detection/{{upload_type}}");
ṣclient.Timeout = -1;
var request = new RestRequest(Method.POST);
request.AddHeader("token", "< your private token >");
request.AddHeader("content-type", "application/json");
var body = @"{" + "" +
@" "doc_base64": '< base64 string of image / video >'," + "" +
@" "req_id": < req id string >" + "" +
@" "isIOS": < boolean >" + "" +
@" "orientation": < int >" + "" +
@" "doc_type": < string (video/image) >" + "" +
@" }";
request.AddParameter("application/json", body, ParameterType.RequestBody);
IRestResponse response = client.Execute(request);
Console.WriteLine(response.Content);
var client = new RestClient("{{url}}/api/v1/deepfake-detection/{{upload_type}}");
ṣclient.Timeout = -1;
var request = new RestRequest(Method.POST);
request.AddHeader("token", "< your private token >");
request.AddHeader("content-type", "application/json");
var body = @"{" + "" +
@" "doc_base64": '< base64 string of audio >'," + "" +
@" "req_id": < req id string >" + "" +
@" }";
request.AddParameter("application/json", body, ParameterType.RequestBody);
IRestResponse response = client.Execute(request);
Console.WriteLine(response.Content);
php
require_once 'HTTP/Request2.php';
$request = new HTTP_Request2();
$request->setUrl('{{url}}/api/v1/deepfake-detection/{{upload_type}}');
$request->setMethod(HTTP_Request2::METHOD_POST);
$request->setConfig(array(
'follow_redirects' => TRUE
));
$request->setHeader(array(
'token' => '< your private token >',
'content-type' => 'application/json'
));
$request->setBody('{"doc_base64": "< base64 string of image / video >","req_id": < req id string >, "isIOS": '< boolean >', "doc_type": '< string (video/image) >', "orientation": '< int >' }');
try {
$response = $request->send();
if ($response->getStatus() == 200) {
echo $response->getBody();
}
else {
echo 'Unexpected HTTP status: ' . $response->getStatus() . ' ' .
$response->getReasonPhrase();
}
}
catch(HTTP_Request2_Exception $e) {
echo 'Error: ' . $e->getMessage();
}
?>
php
require_once 'HTTP/Request2.php';
$request = new HTTP_Request2();
$request->setUrl('{{url}}/api/v1/deepfake-detection/{{upload_type}}');
$request->setMethod(HTTP_Request2::METHOD_POST);
$request->setConfig(array(
'follow_redirects' => TRUE
));
$request->setHeader(array(
'token' => '< your private token >',
'content-type' => 'application/json'
));
$request->setBody('{"doc_base64": '< base64 string of audio >',"req_id": '< req id string >' }');
try {
$response = $request->send();
if ($response->getStatus() == 200) {
echo $response->getBody();
}
else {
echo 'Unexpected HTTP status: ' . $response->getStatus() . ' ' .
$response->getReasonPhrase();
}
}
catch(HTTP_Request2_Exception $e) {
echo 'Error: ' . $e->getMessage();
}
?>
import requests
url = "{{url}}/api/v1/deepfake-detection/{{upload_type}}"
payload = {"doc_base64": "< base64 string of image / video >", "req_id": < req id string >, "isIOS": '< boolean >', "doc_type": '< string (video/image) >', "orientation": '< int >', }
headers = {
'token': '< your private token >',
'content-type':'application/json'
}
response = requests.request("POST", url, json=payload, headers=headers)
print(response.text)
import requests
url = "{{url}}/api/v1/deepfake-detection/{{upload_type}}"
payload = {"doc_base64": '< base64 string of audio >',"req_id": '< req id string >' }
headers = {
'token': '< your private token >',
'content-type':'application/json'
}
response = requests.request("POST", url, json=payload, headers=headers)
print(response.text)
Name | Description |
---|---|
token | String |
Name | Description | |
---|---|---|
body |
{ "req_id" : < string>, "doc_base64": < base64 encoded string> "doc_type": < string> "isIOS": < boolean > "orientation": < int > } |
{ "req_id" : < string>, "doc_base64": < base64 encoded string> } |
Name | Description | |
---|---|---|
body |
{ "req_id" : < string>, "success" : < boolean>, "error_message" : < string> , "doc_type" : < string> , "result" : < string > , } |
{ "success" : < boolean>, "confidence" : < dict>, "error_message" : < string>, "details" : < dict>, "total_duration" : < string>, "real_duration" : < string>, "fake_duration" : < string>, "silence_intervals" : < array>, "non_silence_intervals" : < array> } |
Fields | Values/Description |
---|---|
req_id | Unique request ID used for processing requests |
doc_base64 | Base64 encoded string of the document |
doc_type | Type of document uploaded (image or video) |
isIOS | boolean value if iOS |
orientation | integer |
Fields | Values/Description |
---|---|
req_id | Corresponding request id |
success | Flag if the request is processed successfully |
doc_type | Type of document uploaded |
confidence | Dictionary which give info of amount of real and fake part in audio |
details | Provides detailed audio analysis for specific part of audio data |
error_message | If success is False then: Error message |
total_duration | The total time duration of the analyzed content. |
real_duration | The duration of content identified as real. |
fake_duration | The duration of content identified as fake. |
silence_intervals | Time intervals where silence was detected. |
non_silence_intervals | Time intervals where non-silent (active) content was detected |
result | Result String |